Relationship of Bone Marrow Blast (BMBL) Response to Overall Survival (OS) in Patients with Higher-risk Myelodysplastic Syndrome (HR-MDS) Treated with Rigosertib After Failure of Hypomethylating Agents (HMAs)

Lewis R. Silverman, MD¹, Pierre Fenaux, MD², Aref Al-Kali, MD³, Maria R. Baer, MD⁴, Mikkael Sekeres, MD⁵, Gail Roboz, MD⁶, Gianluca Gaidano, MD⁷, Bart Scott, MD⁸, Peter Greenberg, MD⁹, Uwe Platzbecker, MD¹⁰, David P. Steensma, MD¹¹, Suman Kambhampati, MD¹², Karl-Anton Kreuzer, MD¹³, Lucy Godley, MD¹⁴, Robert Collins, Jr, MD¹⁵, Ehab Atallah, MD¹⁶, Shyamala C Navada, MD¹, Francois Wilhelm, MD, PhD¹⁷, Nozar Azarnia, PhD¹⁷, Guillermo Garcia-Manero, MD¹⁸

¹Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY; ¹Hospital St Louis, Paris, France; ³Mayo Clinic, Rochester, MD; ⁵Cleveland Clinic, Cleveland, OH; ⁵Weill Cornell Medical College, New York, NY; ⁷Amedeo Avogadro University of Eastern Piedmont, Novara, Italy; ⁸Fred Hutchinson Cancer Research Center, Seattle, WA; ⁹Stanford Medical School, Stanford, CA; ¹⁰Universitätsklinikum Dresden, Dresden, Dresden, Dresden, Dresden, Dresden, Germany; ¹¹Dana-Farber Cancer Institute, Boston, MA; ¹²Universitätsklinikum Köln, Köln, Germany; ¹⁴University of Chicago Medical Center, Chicago, IL; ¹⁵Univ of Texas, Southwestern Medical Center at Dallas, TX; ¹⁶Froedtert Hospital and Medical College of Wisconsin, Milwaukee, WI ¹⁷Onconova Therapeutics, Inc., Newtown, PA; ¹⁸MD Anderson Cancer Center, Houston, TX

INTRODUCTION

- Patients (pts) with HR-MDS have a median OS of 4 to 6 months (mo) after HMA failure¹ and no accepted salvage therapy.
- Surrogate endpoints and markers that can serve as an intermediate clinical endpoint (ICE) and predict survival will be an aid in drug development for this population.
- Response to azacitidine in first-line therapy for HR-MDS has been shown to be a surrogate to predict survival.²
- Rigosertib, a novel dual PI3K/PLK pathway inhibitor, has been shown to reduce bone marrow blasts (BMBL) in these pts.³
- Silverman et al described complete or partial bone marrow (BM) response, or stabilization after 4-8 weeks (wks) of treatment with rigosertib as a potential surrogate for predicting survival in pts with HR-MDS after failure of primary HMA therapy.⁴

METHODS

- Pts with HR-MDS were randomly assigned 2:1 to rigosertib or best supportive care (BSC) after progressing on, failing to respond to, or relapsing after HMA treatment.
- BM aspirates were assessed pretreatment, at 4 wks and at 8-week intervals thereafter.
- The BMBL response at each time point was assessed using the following definitions: bone marrow complete response (mCR) = BMBL ≤ 5% and decrease of ≥ 50% from baseline; bone marrow partial response (mPR) = BMBL decrease from baseline of ≥ 50%, but BMBL still > 5%; stable disease (SD) = BMBL decrease or increase from baseline of < 50%; progressive disease (PD) = BMBL increase from baseline of ≥ 50% by an absolute minimum of 5%; Not evaluable (NE).

RESULTS

- Bone marrow assessment was carried out in 156 patients (pts) on the rigosertib arm and 24 pts on the BSC arm at 4 wks after enrollment, and in 86 and 20 pts, respectively, at 12 wks.
- The invasive BM procedure was optional on the BSC arm, which accounts for the low number of assessments in this group. BM responses at the 2 time points are presented in Table 1.
- A landmark analysis was conducted that separated pts who were alive at the 4-wk landmark time into two 4-wk response categories: BM response + SD vs PD.
- Results of this analysis in rigosertib-treated patients were statistically significant at p = 0.011, with a hazard ratio (HR) of 0.62 and a median OS (from 4 wks onward) of 9.8 months in the mCR+mPR+SD group vs 4.6 months in the PD group (Figure 1).
- Another landmark analysis was conducted at 12 wks. Results of this analysis were also significant (p < 0.001) in rigosertib-treated patients, with an HR of 0.39 and a median OS (from 12 wks onward) of 10.4 months in the mCR + mPR + SD group vs 7.5 months in the PD group (Figure 2).
- A time-dependent Cox regression of OS by 4-wk BMBL response reinforced the validity of the 4-wk and 12-wk BM assessments as surrogate biomarkers for survival (Table 2).
- A landmark analysis of Primary HMA failures demonstrated that rigosertib-treated patients with mCR+mPR+SD had significantly greater OS compared to the PD group, at both 4 and 12 weeks, median 11.1 vs 3.9 months (p=0.025, HR = 0.57 and median 11.8 vs 7.5 month, P= 0.0042, HR 0.39, respectively (Fig 3).

Table 1 4 – week Bone Marrow Blast Response (Intention-to-treat Population)						
	Number (%) of Patients					
	4-wk BMBL Response		12-wk BMBL Response			
	Rigosertib N = 199	BSC* N = 100	Rigosertib N = 199	BSC* N = 100		
Pts with BMBL assessment*	156 (78)	24 (24)	86 (43)	20 (20)		
BM complete response (mCR)	22	4	11	5		
BM partial response (mPR)	8	2	9	2		
Stable disease (SD)	77	9	32	8		
Progressive disease	49	9	34	5		
* Bone marrow assessment was not required on the BSC arm						

Table 2 Time-dependent Cox Regression of Overall Survival by Bone Marrow Blast Response							
	Rigosertib		BSC				
Analysis	Wald P-value	Hazard Ratio (95% CI)	Wald P-value	Hazard Ratic (95% CI)			
By 4-wk BMBL response	0.051	0.72 (0.51-1.00)	0.56	0.83 (0.45-1.54)			
By 12-wk BMBL response	0.0005	0.55 (0.39-0.77)	0.16	0.68 (0.39-1.17)			

CONCLUSION

These data suggest that BMBL response at 4 or 12 weeks was correlated with OS in this population of pts with HR-MDS treated with rigosertib after HMA failure and are consistent with previous observations in Phase II studies. BMBL response may serve as an intermediate clinical endpoint for drug development.

REFERENCES

- 1. Prebet T, et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J Clin Oncol 2011;29:3322-27.
- 2. Gore SD, et al. A multivariate analysis of the relationship between response and survival among patients with higher-risk myelodysplastic syndromes treated with azacitidine or conventional care regimens in the randomized AZA-001 trial. Haematol 2013 98(7):1067-72.
- 3. Seetharam M, et al. Treatment of higher risk myelodysplastic syndrome patients unresponsive to hypomethylating agents with ON 01910.Na. Leuk Res 2012;36(1):989-103.
- 4. Silverman L, et al. Clinical activity and safety of the dual pathway inhibitor rigosertib for higher risk myelodysplastic syndromes following DNA methyltransferase inhibitor therapy, Hematol Oncol 2014 (published Online).

Disclosures: Silverman: Onconova Research funding; Fenaux: Celgene: Research Funding; Janssen: Research Funding; Novartis: Research Funding. Sekeres: Celgene Corp.: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Boehringer Ingelheim: Membership on an entity's Board of Directors or advisory committees. Wilhelm: Onconova Therapeutics, Inc: Employment, Equity Ownership. Azarnia: Onconova Therapeutics, Inc: