CETSA profiling unveils novel targets engaged by anti-tumor drug rigosertib to inhibit RAS-MAPK signaling and trigger NLRP3 inflammasome activation

Petros Kechagioglou^{1*}, Camille Dupont^{1*}, Hajime Yurugi^{1*}, Alexey Chernobrovkin², Kristina Riegel¹, Stephen Cosenza³, Steven M Fructman³ and Krishnaraj Rajalingam¹

Abstract

- Rigosertib originally described as a non-ATP-competitive inhibitor of Polo-like kinase 1 (PLK1)
- Induces mitotic arrest and inhibits cancer cells growth
- Disruptor of multiple signaling pathways including RAS-MAPK signaling through multiple mechanisms
- Rigosertib is in the late stage of clinical development for treatment of many cancers
- Challenge: Although RAS/RAF/MEK signaling inhibition by rigosertib contributes to its effect on tumor cells, the upstream target of rigosertib remains unknown
- Aim: Decipher the molecular mechanism responsible for the antitumor properties of rigosertib and to consolidate the mechanism of action by identifying unknown targets in cancer cells

Rigosertib does not compete with RAS for binding to CRAF-RBD

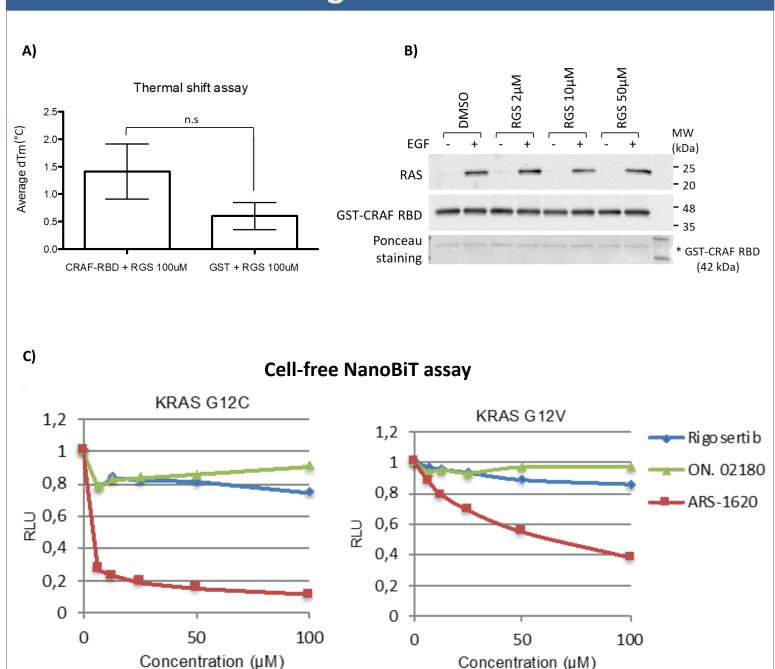
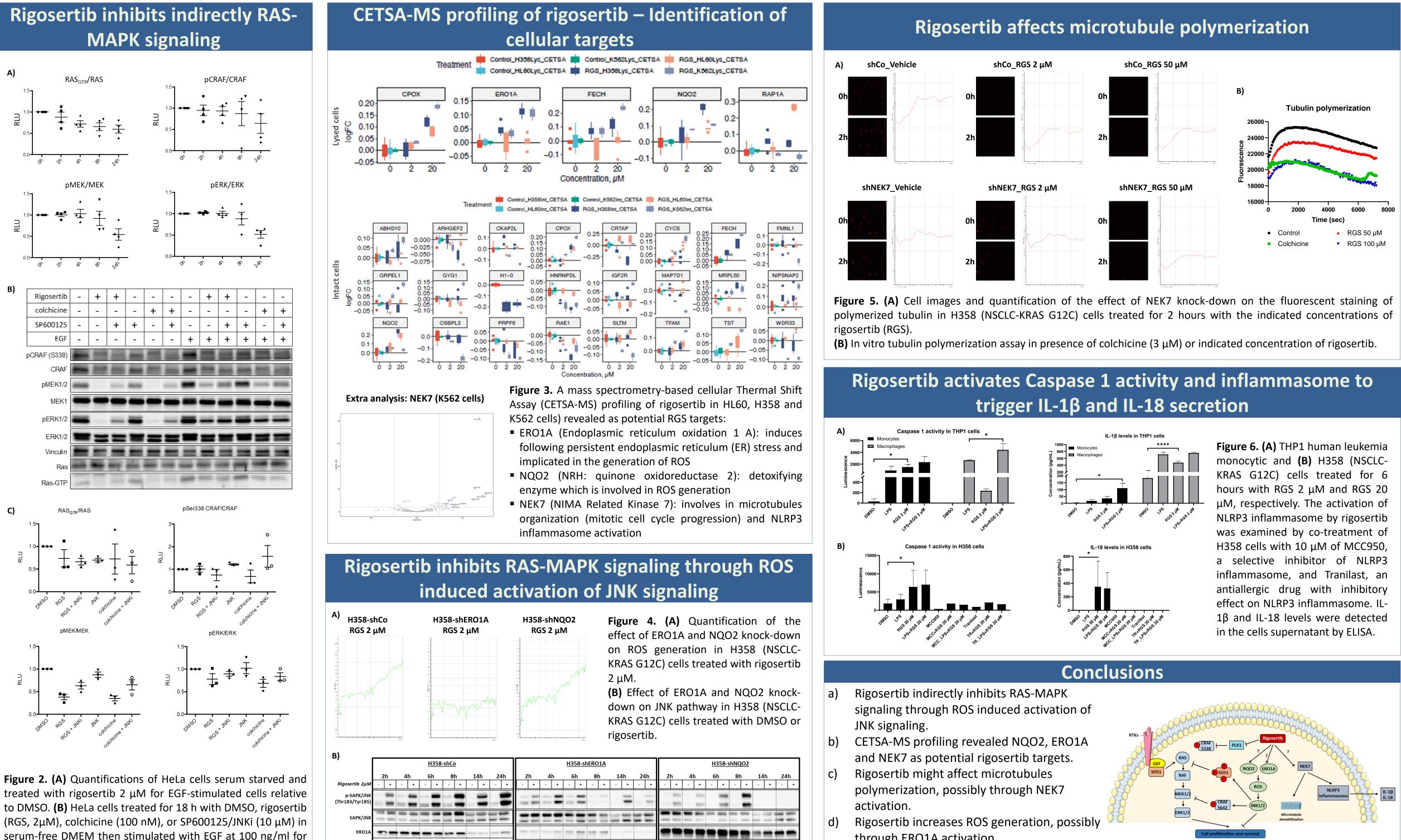



Figure 1. (A) Difference of denaturation temperature in presence of rigosertib 100 µM compared to DMSO assessed by Thermal Shift Assay for purified GST-CRAF RBD and GST control. (B) Competition assay between RGS and active RAS from HeLa cell lysates for binding to purified GST-CRAF RBD. (C) A cell-free NanoBiT assay in lysates of HEK-293T transfected with SmBiT-CRAF RBD and either LgBiT-KRAS G12V or G12C. Cell lysates were incubated for 4 h with increasing concentrations of ARS-1620, rigosertib or ON02180.Na.

serum-free DMEM then stimulated with EGF at 100 ng/ml for 5 min. (C) Quantification of (B) for EGF-stimulated cells relative to DMSO.

Contact

Petros Kechagioglou, PhD University medicine at the Johannes Gutenberg University in Mainz Email: pkechagi@uni-mainz.de

References

¹Cell Biology Unit, University Medical Center Mainz, Germany, ²Pelagobio, Sweden, ³Onconova Inc, USA. ^{*}contributed equally to this work

Acknowledgements

UNIVERSITĀTS**medizin.**

. Gumireddy, K., Reddy, M.V.R., Cosenza, S.C., Boominathan, R., Boomi Nathan, R., Baker, S.J., Papathi, N., Jiang, J., Holland, J., Reddy, E.P., 2005. Cancer Cell 7, 275–286. 2. Prasad, A., Park, I.-W., Allen, H., Zhang, X., Reddy, M.V.R., Boominathan, R., Reddy, E.P., Groopman, J.E., 2009. Oncogene 28, 1518–1528. 3. Reddy, M.V.R., Venkatapuram, P., Mallireddigari, M.R., Pallela, V.R., Cosenza, S.C., Robell, K.A., Akula, B., Hoffman, B.S., Reddy, E.P. J Med Chem 54, 6254–6276. 4. Ritt, D.A., Abreu-Blanco, M.T., Bindu, L., Durrant, D.E., Zhou, M., Specht, S.I., Stephen, A.G., Holderfield, M., Morrison, D.K., 2016. Mol Cell 64, 875–887.

The states down where once some spins many pro-

- through ERO1A activation.
- Rigosertib activates inflammasome to trigger IL-1β and IL-18 secretion.

ONCONOVA

HERAPEUTICS

