Phase 1/2 Trial of Rigosertib & Nivolumab in KRAS-Mutated NSCLC in 2nd+ Line

Rajwanth Veluswamy, MD MSCR Assistant Professor of Medicine Icahn School of Medicine at Mount Sinai

Icahn School of Medicine at **Mount Sinai**

Disclosures

RRV has served on advisory boards for Bristol-Myers Squibb, Astrazeneca, Merck, Novocure, on unbranded speaker's bureau of Astrazeneca, received consulting honorarium from Beigene, and research grants from Bristol-Myers Squibb, Onconova, Astrazeneca and EMD Serono.

Rigosertib Mechanisms of Action

▶ RAS is the most commonly mutated gene accounting for ~25% of cancers

Proposed Mechanisms of Action

- Disruption of RAS effectors¹
- Inhibition of Ras/Raf/MEK/ERK pathway signaling by a stress-induced phospho-regulatory circuit²
- Microtubule-destabilizing agent³
- Immunomodulator with promotion of immune effector cell tumor infiltration⁴

Clinical Studies

 Over 1,300 patients have been treated with established safety profile

1. Athuluri-Divakar SK, Cell 2016;165:643; 2. Ritt et al: Molecular Cell 64, 87; 2016; 3. Jost et al: Molecular Cell 68, 210; 2017; 4. Chi Yan, E.Premkumar Reddy, and Ann Richmond, AACR 2019, VUMC

Molecular Cell

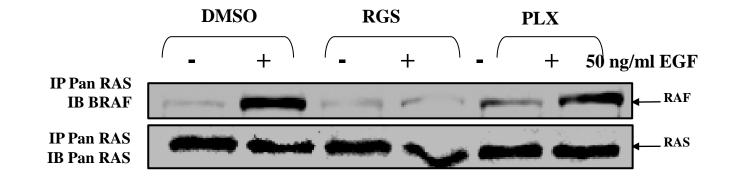
Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent

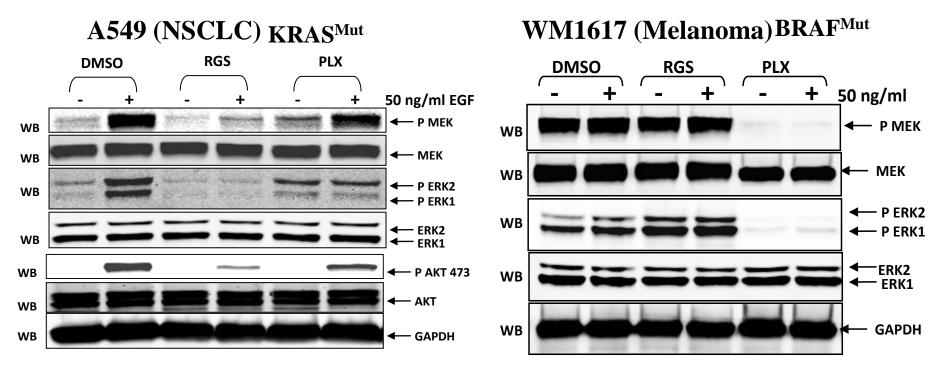
Graphical Abstract

Authors

Marco Jost, Yuwen Chen, Luke A. Gilbert, ..., Michel O. Steinmetz, Marvin E. Tanenbaum, Jonathan S. Weissman

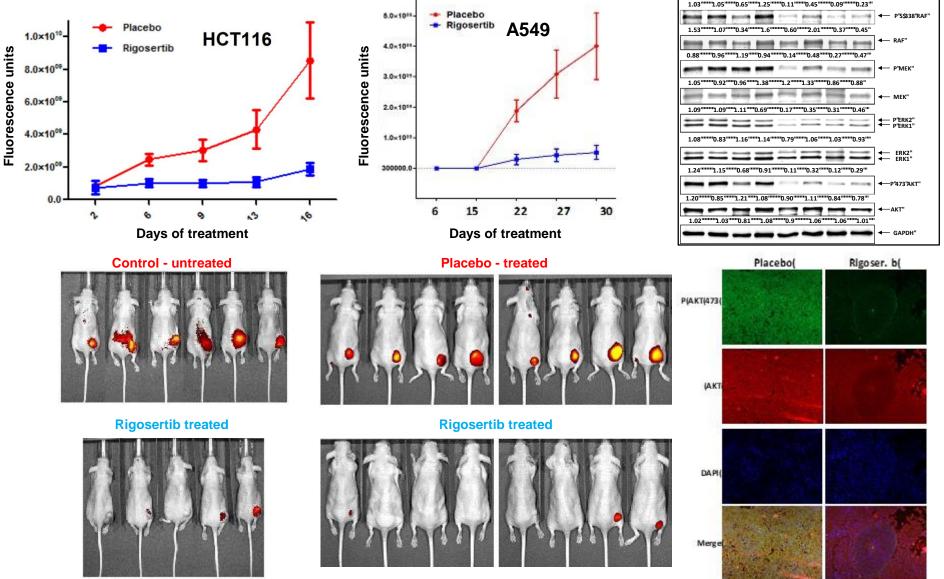
Article


Correspondence


m.tanenbaum@hubrecht.eu (M.E.T.), jonathan.weissman@ucsf.edu (J.S.W.)

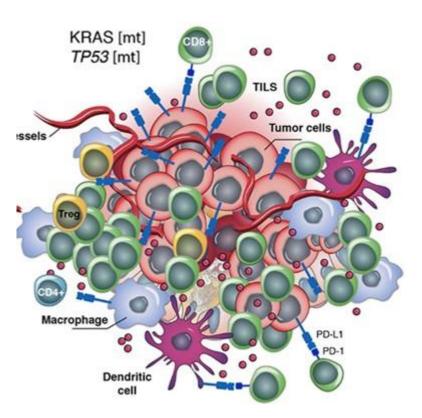
In Brief

Jost et al. present a two-tiered strategy to identify molecular targets of bioactive compounds using CRISPRi/a-mediated chemical-genetic screens. Application to rigosertib, an anti-cancer drug with an unclear mechanism of action, points to rigosertib being a microtubuledestabilizing agent. Targeted cell biological, biochemical, and structural approaches confirm this mechanism of action.

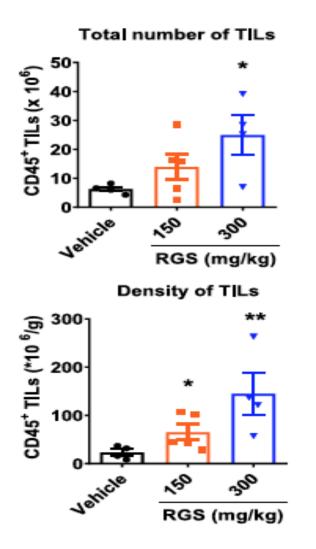

Rigosertib Inhibits MAPK/ERK and AKT Pathway

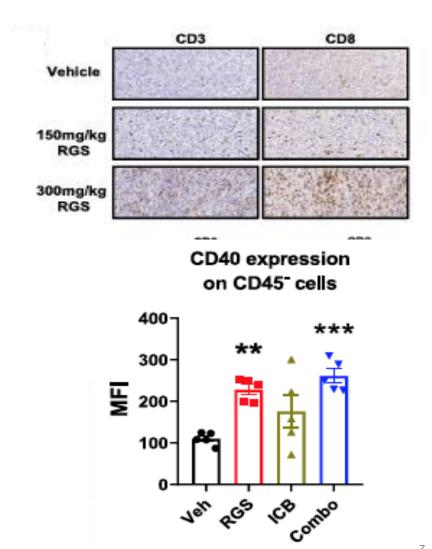
Athuluri-Divakar et al. Cell, 2016

Inhibition of Tumor Growth by Rigosertib in Mouse Xenograft Assays

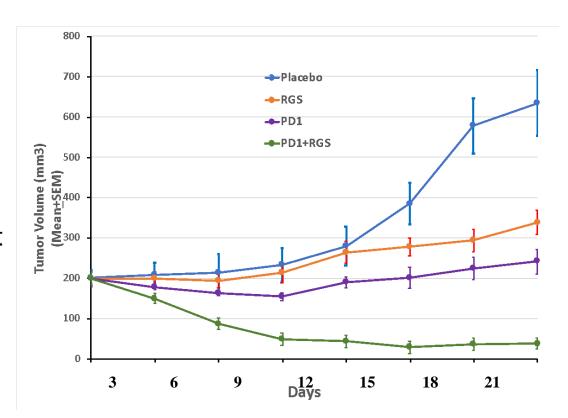


"T2""T4"


Athuluri-Divakar et al. Cell, 2016


Immunotherapy in KRAS-Mutated NSCLC

- Immune checkpoint inhibitors (ICIs) have become standard of care in metastatic NSCLC
- KRAS mutations are associated with ICI benefit in NSCLC
- KRAS-mutant NSCLC exhibits increased TMB, potentially leading to increased ICI sensitivity
- Concurrent mutations with KRAS affect immunogenicity – cooccurring TP53 mutations associated with immune-rich microenvironment


Rigosertib Increases the TILs Infiltration and CD40 Expression

Rigosertib and PD-1 Inhibitor Act Synergistically

 Using MC38 models (immunocompetent CRC), rigosertib inhibits tumor growth as both monotherapy and synergistically with an anti-PD1 checkpoint inhibitor (HX-008)

Study Design

Patient Selection

Main Inclusion criteria

- Stage IV Lung Adenocarcinoma with KRAS mutation
- POD or intolerant of checkpoint inhibitor monotherapy or in combo with platinum doublet chemotherapy
- ECOG 0-2

Main Exclusion Criteria

- EGFR sensitizing mutation or ALK translocation
- Active autoimmune disease or steroids > 10mg
- Untreated CNS metastases

Correlative Studies

- Genomic Studies
- Immunophenotyping

Dose Escalation Phase (n=8-18)

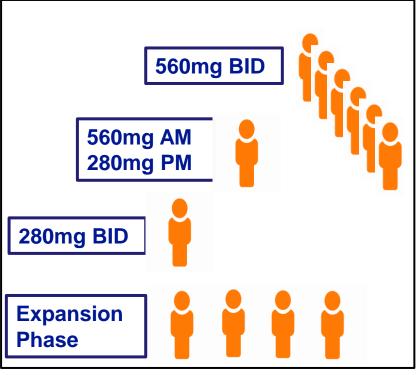
Oral Rigosertib days 1-21 of 28-day cycle IV Nivolumab 240mg days 1 & 15

Accelerated Titration Design Escalating single patient cohorts Dose 1: RGS 280mg BID Dose 2: RGS 560mg AM, 280mg PM Dose 3: RGS 560mg BID

Primary Objective: Safety/Tolerability

3+3 design if Gr 2 Toxicity

Dose Expansion Phase (n=12)


Rigosertib at Highest Dose + Nivolumab

Secondary Objectives: Determine ORR per Recist 1.1, PFS, OS

Radiographic Scans every 8 weeks +/- 2 weeks

Patients

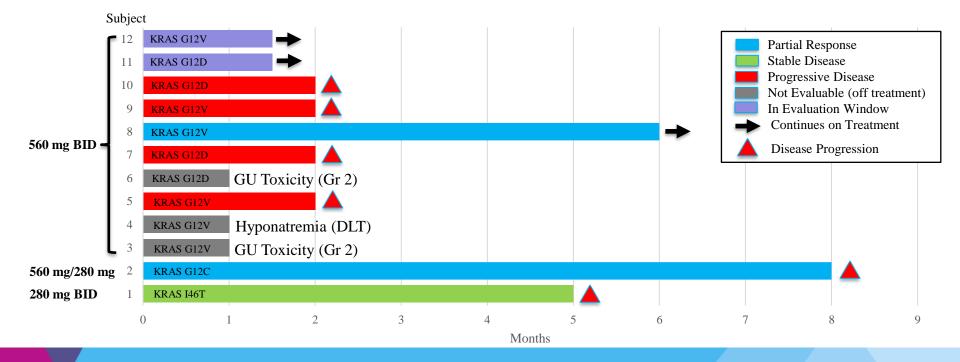
- Trial opened at Mount Sinai in June 2020
- 12 patients currently enrolled
- 92% of patients have non-G12C mutations
- Cohort is heavily treated all patients progressed on prior PD1/L1 inhibitors

Baseline Characteristics	Entire Cohort N=12
Age in years – median (range)	60 (53 - 80)
Type of KRAS mutation – n (%) G12V	6 (50%)
G12D G12C	4 (33%)
I46T	1 (8%) 1 (8%)
Smoking history – n (%) Current/Former Never	8 (67%) 4 (33%)
ECOG performance status – n (%) 0 1	8 (67%) 4 (33%)
Prior Lines of Systemic Therapy $-n$ (%) 1 2 ≥ 3	3 (25%) 6 (50%) 3 (25%)
Type of prior systemic therapy – n (%) PD-1/PD-L1 inhibitor monotherapy Platinum chemo + PD-1 therapy	1 (8%) 11 (92%)

Safety/Tolerability with Rigosertib+Nivolumab

TRAEs Were Mostly Mild – Only 1 DLT Thus Far

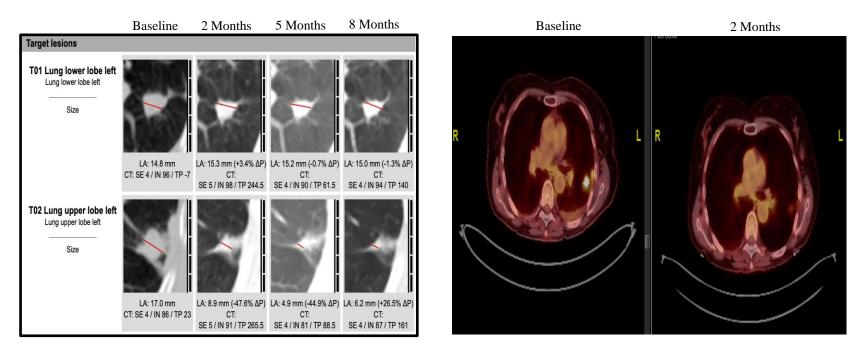
Treatment-Related Adverse Events	Entire Cohort: N=12	
(TRAEs) – n (%)	Grade 1-2	Grade 3
Dysuria	7 (58)	
Hematuria	7 (58)	
Urinary Frequency	2 (17)	
Abdominal Pain	4 (33)	
Fatigue	6 (50)	
Anemia	10 (83)	
Lymphopenia	3 (25)	1 (8)
Thrombocytopenia	2 (17)	
Hyponatremia*	3 (25)	1 (8)*
Hyperglycemia	11 (92)	
AST elevation	3 (25)	
ALT elevation	3 (25)	
ALK elevation	2 (17)	
Nausea/Vomitting	4 (33)	
Constipation	4 (33)	
Diarrhea	2 (17)	
Anorexia	2 (17)	
Pruritis	1 (8)	
Infusion-related Reaction	1 (8)	
*Dose Limiting Toxicity		


- Urinary toxicities well documented with Rigosertib were most common TRAE
- Most toxicities were manageable
- No synergistic toxicities noted for either study drug
- One DLT at 560mg BID for grade 3 hyponatremia

 previously documented with Rigosertib

Response to Rigosertib+Nivolumab

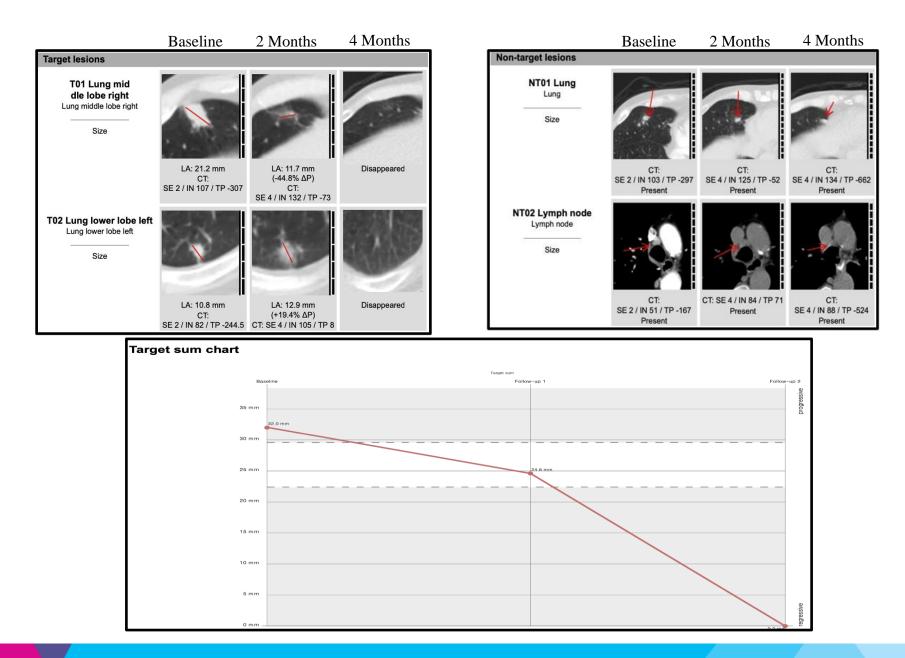
3 of 7 (43%) Evaluable Patients had Disease Control (2 PR + 1 SD)

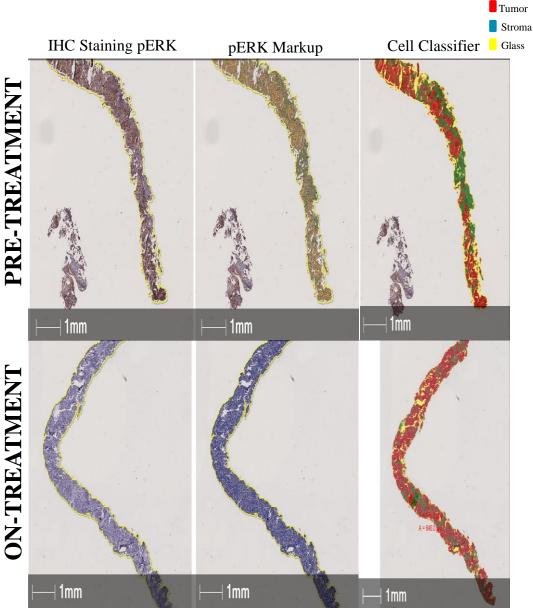

Best Overall Response in Evaluable Patients– n (%)	N=7
Complete Response	0 (0)
Partial Response	2 (29)
Stable Disease	1 (14)
Progressive Disease	4 (57)
Not Evaluable Patients – n (%)	N=5
Discontinued Study Drug due to Toxicity	3 (60)
Currently on Study Drug in Evaluation Window	2 (40)

Patient #2: Partial Response at RGS 560mg AM / 280mg PM

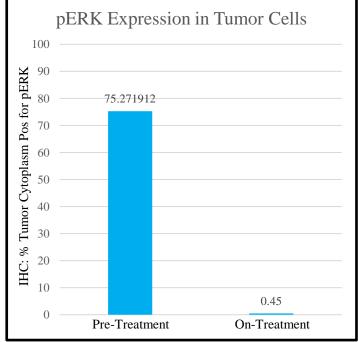
Demographics		Clinical Characteristics	
		Histologic Type	Mucinous Adeno
Sex	F	Molecular Profile	KRAS G12C, STK11, SMARCA4
Race	White	PD-L1 Expression	99%
Smoking	current	Sites of Disease	Lung, Bone
ECOG PS	0	Prior Lines of Treatment	1 st : neoadj trial with IO+chemo: 2 cycles 2 nd : Carbo/Pem/Pembro (3 months)

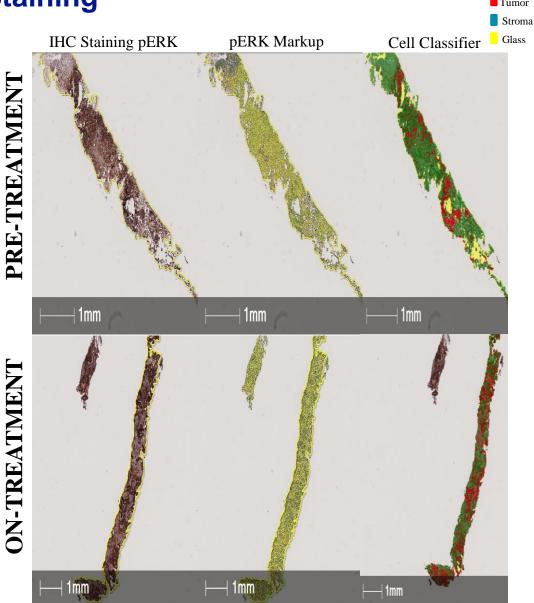
Patient #2: Partial Response at RGS 560mg AM / 280mg PM

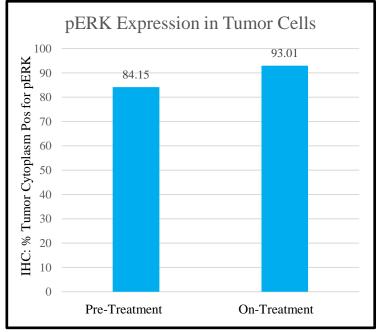



Patient #8: Partial Response at RGS 560mg BID

Demographics		Clinical Characteristics	
		Histologic Type	Lung Adeno
Sex	М	Molecular Profile	KRAS G12V, TP53
Race	White	PD-L1 Expression	5%
Smoking	former	Sites of Disease	Lung, Brain
ECOG PS	0	Prior Lines of Treatment	1 st : Carbo/Pem/Pembro (5 months)


Patient #8: Partial Response at RGS 560mg BID


Patient #1: Stable Disease at RGS 280mg BID – pERK Staining


- Significant loss of pERK IHC Staining on Rigosertib/Nivolumab
- Correlates with Clinically Stable Disease

Patient #10: Disease Progression at RGS 560mg BID – pERK Staining

- No loss of pERK IHC Staining on Rigosertib/ Nivolumab
- Correlates with Clinical Disease Progression

Conclusions and Future Directions

- Rigosertib, a novel NME that down modulates mutated KRAS pathway (mutation agnostic), in combination with Nivolumab is well tolerated, with low incidence of grade 3 or higher toxicities
 - Only one DLT observed thus far (hyponatremia)
- 3 out of 7 (43%) evaluable patients on trial demonstrated clinical benefit
 - 2 PRs + 1 SD
 - Responses across different KRAS mutations (G12C, G12V, I46T)
- Future Directions
 - 9 more patients to be enrolled in 560mg BID Expansion Cohort
 - Molecular and Immune studies on pre-/on-treatment biopsies to further describe the pharmacodynamics and impact on immune microenvironment
 - Additional dose escalation cohorts to determine the MTD/RPTD are being considered