

Rigosertib

Strategies to Rasopathies and JMML

Steven Fruchtman, M.D.

Chief Medical Officer & Senior Vice President, Research & Development

Rasopathy Network, Orlando July 28, 2017

DESCRIPTION OF RIGOSERTIB AS A RAS MIMETIC

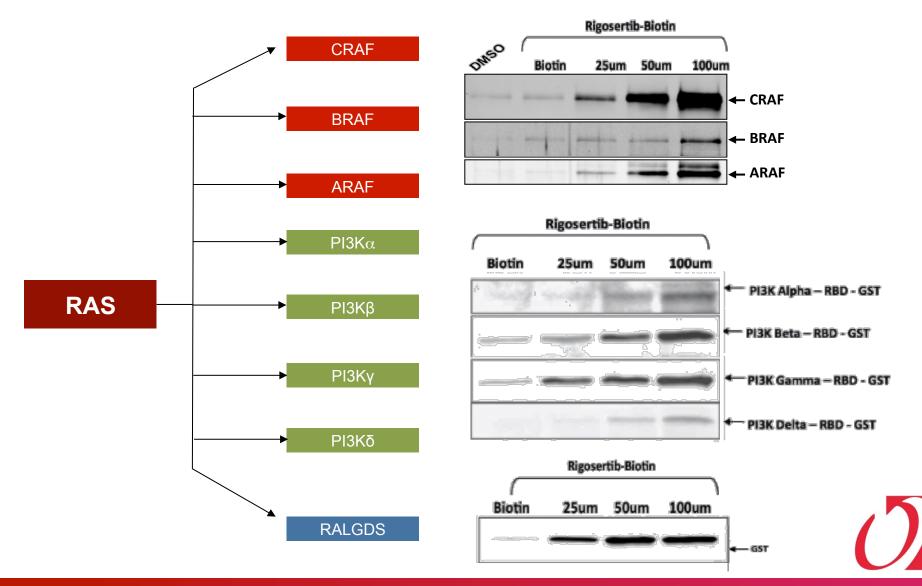
Article

Cell

A Small Molecule RAS-Mimetic Disrupts RAS Association with Effector Proteins to Block Signaling

Sai Krishna Athuluri-Divakar,^{1,2} Rodrigo Vasquez-Del Carpio,^{1,2} Kaushik Dutta,³ Stacey J. Baker,^{1,2} Stephen C. Cosenza,^{1,2} Indranil Basu,⁵ Yogesh K. Gupta,^{1,2} M.V. Ramana Reddy,^{1,2} Lynn Ueno,⁴ Jonathan R. Hart,⁴ Peter K. Vogt,⁴ David Mulholland,^{1,2} Chandan Guha,⁵ Aneel K. Aggarwal,^{1,2} and E. Premkumar Reddy^{1,2,*} ¹Department of Oncological Sciences ²Department of Structural and Chemical Biology Icahn School of Medicine at Mount Sinal, 1425 Madison Avenue, New York, NY 10029, USA ³New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA ⁴The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA ⁵Department of Radiation Oncology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA

*Correspondence: ep.reddy@mssm.edu

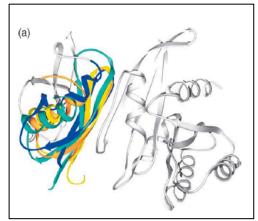


PRIOR KNOWLEDGE REGARDING RIGOSERTIB MECHANISM

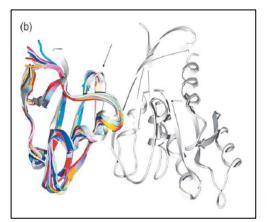
- Broad anti-cancer activity in vitro (cell lines) and in vivo (tumor xenografts); no resistance mechanism identified
- Induction of apoptosis through inhibition of intracellular PI3K signaling
- Prominent phenotype of G2/M arrest
- Precise molecular MOA connecting observations remained elusive

RIGOSERTIB BINDS TO MULTIPLE RAS EFFECTOR RBDS

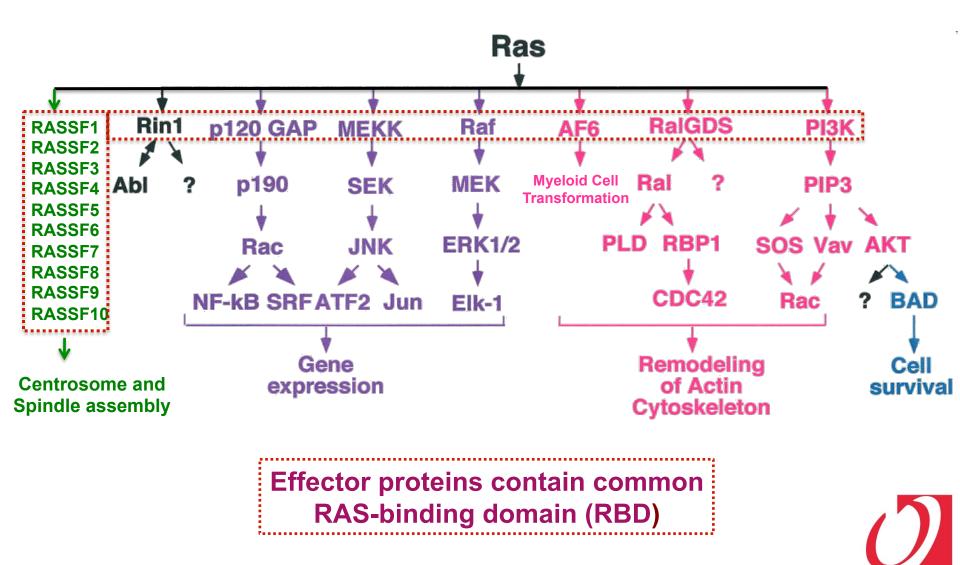
Confidential


- 4

SECONDARY/TERTIARY STRUCTURAL SIMILARITY OF RBDS DESPITE LACK OF EXTENSIVE SEQUENCE HOMOLOGY


Sequence Alignment of RA and RB Domains

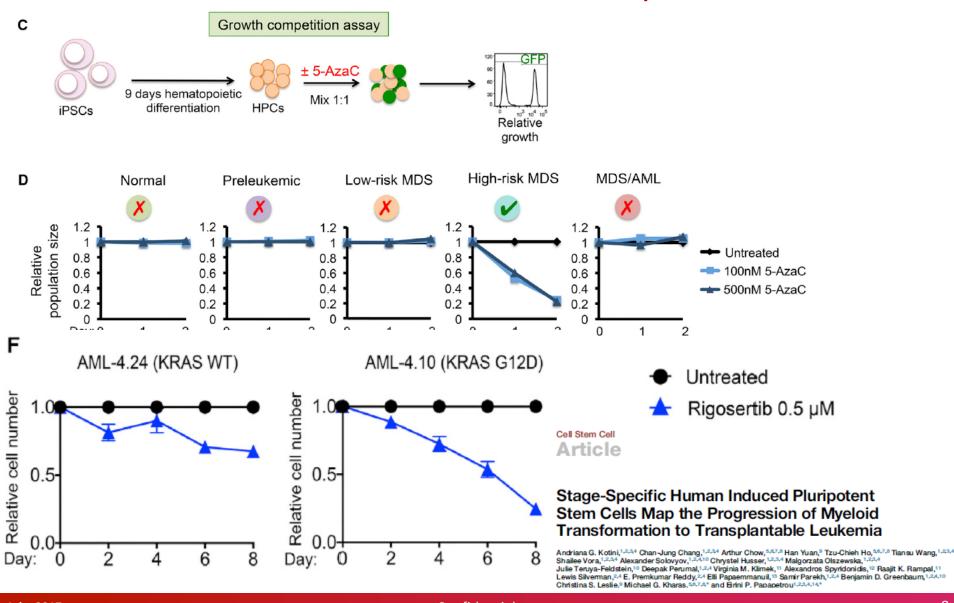
ſ	· · · · · · · · · · · · · · · · · · ·		
	β1	β2	αι
RA cons.50%	CSDSLRVasss	sssh+slplss o	sTsp VlppllcKaplss
RalGDS 11	DCCI IRVSLD-VDN		
AF6 RA1 36	DLEFHOVMRFYFODKAAG-		
AF6 RA2 244	PDSGGTLRIYAD-SLKP-		
RASSF1C 84	LNKDGSYTGFIKVOLK(37) P-		
mNorel 225	LSEDGTYTOFIKVHLK(37) P-		
RIN1 619	-PATHCFQHLLRVAYQ-DPSS-	CCTSKTLAVPP I	ASIATLNQLCATK FRVT
RIN2 782	-PSVDDFQNYLRVAFQ-EVNS-		
PDZGEF 600	SATPDLPDOVLRVFKA		
Rain 144	PPGVLKIFGA-GLAS-		
Krit1 416	NKPYEK VRIYRM	DGSYRSVELKH	- GNNTTVQQIMEGNRLSQ
spByr2 65	REFPRPCILRFIAC	NGQTRAVQSRG	-DYQKTLAIALKKFSLE
SCCYR1 674	PRHYAIRIFNT		
EpacII 658	QKROPIRGSDEVLF(5)		
EpacI 509	BGSSCALQVGDKVPY(6)		
RepacI 241 PLC RA1 2008	RKCLOTHRVTVHGV-PG		
PLC_RA1 2008 PLC_RA2 2132			
PI3K-V223K 213	-KKIANNCIFIKIHRS	TTSOTTRUSP	DTPGATLOSFFTKMAKK
DAGK RA2 395	AQEVLK1YPG-WLKV-		
MYOSINIXB 9	SGRREQAAYHLHIYPQL	STTESOASCRV(4)I	STTSDVIKDALASLED
MYOSINIXA 14	NEHTLRIYPG		
Grb7 100	RPHVVKVYSE		
Cl2orf2 1	NR KVWYD	QUORTUVQUTE	TTCQEVVIALAQA LGRTG
Cliorfi3 6	AAME LKVWVD		
ALS2 321	KKLVIRVHMS		
	KKLVVKVHMN		
Nexin27 273	SDVELRVALP	-DGTTVTVRVKK1	ISTTDQVYQAIAAKVGMD
		1	1
RBD cons.50% cRaf	shs+VaLP 55SNTIRVFLP		Scol+DsLpplLc+RGLs SMSLHDCLMKALKVRGLO
o a tot a	61RHCCIHLP		FSIKDILSGLCERHGIN
-	93IFRLDLVP		KPVTEVLRPVVARYGLD
	300RYCCVYLP		SLTIRDMLAGICEKRGLS
			KRLOEALOPILEKHGLS
RG514_RED2	OIIFELELIA	IERVVKIARRF	KRUQERUQFTIERIGES
UBO cons.50%	lplpVKsh	stcshslclsss	cTVppLKp+lpsppul
Ubiguitin	1NQIFVKTL		-DTIENVKAKIODKEGI
ISG15	3WDLTVKML		-MSVSELKAOITOKIGV
BAG-1	73IT /TVTHS		-PVVODLAOVVEEVIGV
Ubiguilin1	37NKVTVKTP		-SSVOOFKEEISKRFKS
			Se . S Y


Yellow: Hydrophobic Core; Cyan: Conserved Charged Amino Acids Red: Conserved Hydrophobic AA; Green: Conserved Aromatic AA RAF/Ral-GDS/PI3K Crystal Structures Superimposed

NMR Structures of 10 RBDs Superimposed

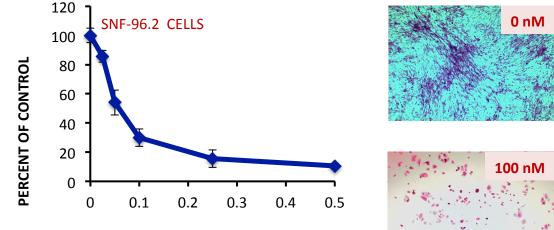
RAS SIGNALS VIA MULTIPLE EFFECTORS

NOVEL MECHANISM OF ACTION OF RIGOSERTIB


- Rigosertib is a first-in-class molecule that targets the multiple signaling pathways driven by RAS.
- Rigosertib achieves this by binding to the RBD of Ras effector proteins including PI3K and Raf, thereby leading to their inactivation.
- This novel mechanism helps to explain the pleiotropic effects of rigosertib, such as inhibition of the PI3K and PLK pathways.

Future directions:

- Exploit the new knowledge to determine the extent of Ras effector proteins targeted by rigosertib and their role in additional tumor types.
- Further characterize the potential for rigosertib in Ras-driven tumors:
 - Tumors with activation of Ras pathways
 - Tumors that are resistant to targeted agents due to Ras activating mutations



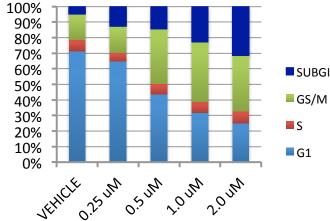
GROWTH COMPETITION ASSAY WITH AZA & RIGOSERTIB ON IPSC IN MDS / AML

GROWTH INHIBITION AND INDUCTION OF APOPTOSIS WITH RIGOSERTIB IN NF1 CELLS

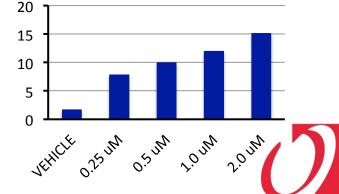
Malignant Peripheral Nerve Sheath Tumors (MPNSTs)



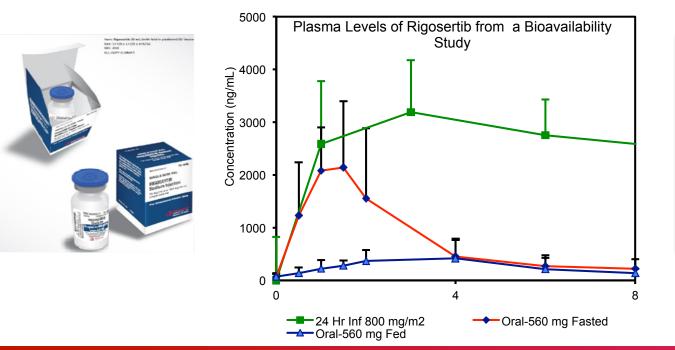
CONCENTRATION (µM)


RELATIVE UNITS

25 nM



50 nM



Clinical Trials in MDS

TWO RIGOSERTIB FORMULATIONS

- IV (Phase 3 INSPIRE ongoing)
 - Continuous infusion using a portable pump
 - >500 patients treated in trials
 - Lead indication 2nd-line HR-MDS

- Oral (Phase 2 enrolled)
 - Bioavailability ~35%
 - >200 patients treated
 - Combination with azacitidine for HR-MDS and AML

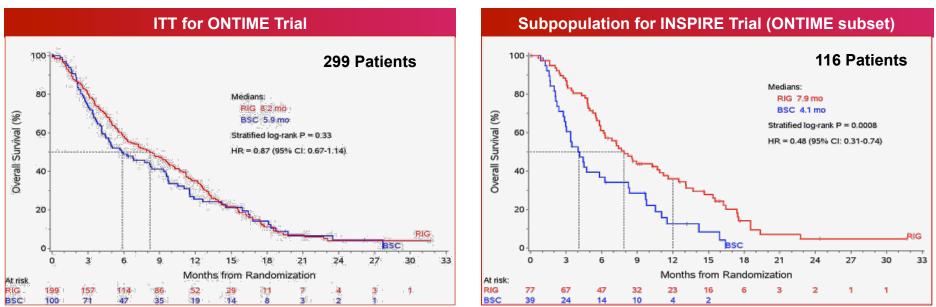
SINGLE-AGENT IV RIGOSERTIB FOR HR-MDS FAILING HMA

Rigosertib versus best supportive care for patients with high-risk myelodysplastic syndromes after failure of hypomethylating drugs (ONTIME): a randomised, controlled, phase 3 trial

Guillermo Garcia-Manero, Pierre Fenaux, Aref Al-Kali, Maria R Baer, Mikkael A Sekeres, Gail J Roboz, Gianluca Gaidano, Bart L Scott, Peter Greenberg, Uwe Platzbecker, David P Steensma, Suman Kambhampati, Karl-Anton Kreuzer, Lucy A Godley, Ehab Atallah, Robert Collins Jr, Hagop Kantarjian, Elias Jabbour, Francois E Wilhelm, Nozar Azarnia, Lewis R Silverman, for the ONTIME study investigators*

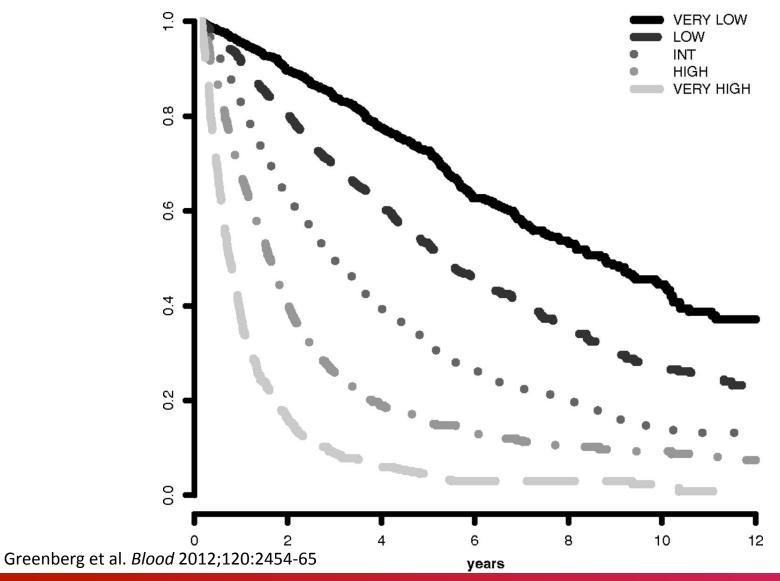
Summary

Background Hypomethylating drugs are the standard treatment for patients with high-risk myelodysplastic syndromes. Survival is poor after failure of these drugs; there is no approved second-line therapy. We compared the overall survival of patients receiving rigosertib and best supportive care with that of patients receiving best supportive care only in patients with myelodysplastic syndromes with excess blasts after failure of azacitidine or decitabine treatment.


Lancet Oncol 2016

Published Online March 8, 2016 http://dx.doi.org/10.1016/ \$1470-2045(16)00009-7

PATIENT POPULATION FOR PHASE 3 INSPIRE TRIAL


Data from ONTIME Paper* Recently Published in Lancet Oncology

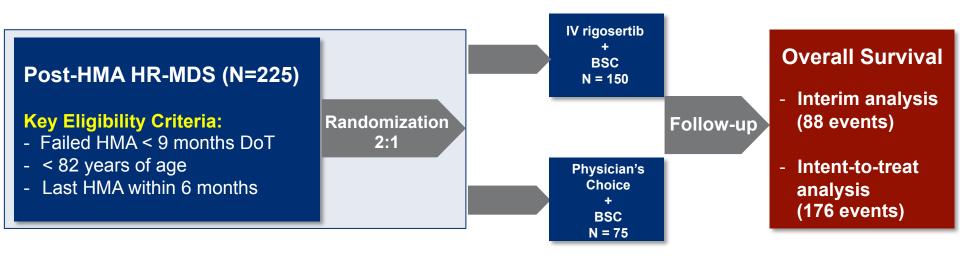
ITT OS analysis of ONTIME – HR= 0.87; NS survival benefit
ITT OS of proposed INSPIRE population – HR = 0.48; P = 0.0008

*Guillermo Garcia-Manero, Pierre Fenaux, Aref Al-Kali, Maria R Baer, Mikkael A Sekeres, Gail J Roboz, et al. Rigosertib versus best supportive care for patients with higherrisk myelodysplastic syndromes after failure of hypomethylating drugs (ONTIME): a randomised, controlled, phase 3 trial; *The Lancet Oncology* 2016 (17): 496–508

REVISED IPSS-R IN RELATION TO SURVIVAL

ONTIME TRIAL: ITT SUBGROUPS CORRELATED WITH BETTER SURVIVAL BENEFIT

Subgroup	Rigosertib		BSC			
	Ν	Median (mos)	Ν	Median (mos)	HR (95% CI)	p-value
Monosomy 7	16	5.6	13	2.8	0.24 (0.09-0.66)	0.003
Trisomy 8	22	9.5	8	4.5	0.34 (0.12-0.95)	0.035
Very high risk per IPSS-R	93	7.6	41	3.2	0.56 (0.37-0.84)	0.005


SAFETY OF SINGLE-AGENT IV RIGOSERTIB IN MDS

Treatment-related Adverse Events Reported in ≥5% of Patients with MDS Treated with IV Rigosertib as Monotherapy (N=355)

MedDRA Preferred Term	All Grades	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
Any treatment-related AE	238 (67)	55 (15)	70 (20)	71 (20)	37 (10)	5 (1)
Nausea	64 (18)	51 (14)	10 (3)	3 (1)	0	0
Fatigue	63 (18)	18 (5)	38 (11)	6 (2)	1 (<1)	0
Diarrhoea	51 (14)	37 (10)	10 (3)	4 (1)	0	0
Constipation	40 (11)	32 (9)	7 (2)	1 (<1)	0	0
Anaemia	25 (7)	1 (<1)	4 (1)	18 (5)	1 (<1)	1 (<1)
Vomiting	24 (7)	17 (5)	5 (1)	2 (1)	0	0
Dysuria	20 (6)	14 (4)	3 (1)	3 (1)	0	0
Abdominal pain	19 (5)	14 (4)	4 (1)	1 (<1)	0	0

INSPIRE: RIGOSERTIB PHASE 3 TRIAL

- Statistical analysis: two analysis planned
 - 1. Power 0.80; Target HR < 0.625; (reduce mortality by > 37.5%)
 - **2.** α for ITT = 0.04; α for IPSS-R VHR = 0.01
 - 3. Trial can succeed in two ways: ITT population or IPSS-R Very High Risk
- Genomic sequencing of patient samples

Commentary on new trial in recent publication: Emilio P Alessandrino, Matteo G Della Porta. Novel trial designs for high-risk myelodysplastic syndromes; *The Lancet Oncology* 2016 (17): 410–412

17

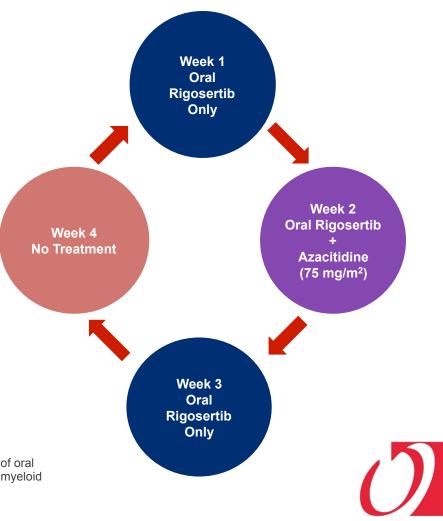
Oral Rigosertib + Azacitidine for HR-MDS

RIGOSERTIB + AZACITIDINE

- Despite activity in MDS, single-agent DNMT inhibitors are limited by low CR and PR rates (7-20%) with median duration of 15 months
- Combinations should not add burdensome toxicities
- DNMT inhibition may be complemented by combination with novel mechanisms to improve response rates and duration

PRE-CLINICAL BACKGROUND

- Combination of rigosertib with AZA produced an increase of 1.7- to 2.9-fold in cytotoxicity (p<0.05) in HL-60 cells*
- Interaction resulted in a synergistic effect with combination indexes between 0.3 and 0.75
- Sequence of administration influenced degree of cytotoxicity; rigosertib priming offered optimal results
- These pre-clinical results provided rationale for combining agents in a Phase 1/2 study in MDS and AML patients with optimal sequence


*Skidan I, Zinzar S, Holland J, Silverman. Toxicology of a novel small molecule ON01910Na on human bone marrow and leukemic cells in vitro. *AACR Meeting Abstracts*, Apr 2006:309

RIGOSERTIB + AZACITIDINE COMBINATION

- Phase 1 combination was well tolerated with evidence of efficacy in patients with MDS*
- Azacitidine given one week per month (full dose and administrative scheme per label)
- Rigosertib given 3 of 4 weeks (at recommended Phase 2 dosing of 560/280 mg BID)
- Adverse event profile of combination similar to singleagent azacitidine (per label)

*Navada S, Garcia-Manero G, Wilhelm F, et al. A phase I/II study of the combination of oral rigosertib and azacitidine in patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). *ASH* 2014; Abstract 3252.

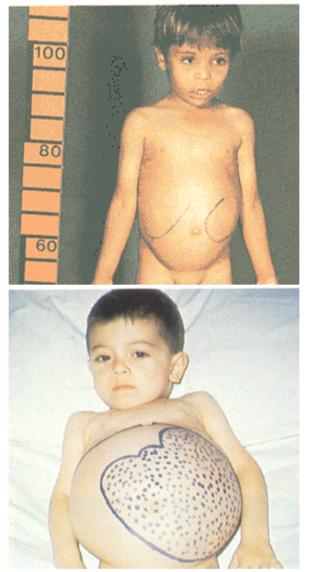
RIGOSERTIB + AZACITIDINE UPDATED PHASE 2 DATA ASH 2016*

- ORR of 85% in 20 HMA naïve patients
- ORR of 62% in 13 patients who progressed/failed prior HMA
- Median DoR for CR is 8.0 months; median time to best response is 3.3 cycles

Response Assessment per 2006 IWG Criteria

Patient Characteristics	Eval (n=33)	HMA Naïve (n=20)	HMA Failure** (n=13)		
Complete Remission (CR %)	8 (24%)	7 (35%)	1 (8%)		
Overall Response Rate (ORR %)	25 (76%)	17 (85%)	8 (62)		

* Data shown as of data cut off Oct 1, 2016; response based on IWG 2006 criteria
**10 patients received previous therapy with azacitidine, 2 with decitabine and 1 with both
HMAs; prior HMA cycles ranged from 4-20


Navada S, et al. A phase 2 study of the combination of oral rigosertib and azacitidine in patients with myelodysplastic syndrome (MDS). ASH 2016

Rasopathies and JMML

JUVENILE MYELOMONOCYTIC LEUKEMIA OVERVIEW

- Hematopoietic disorder of infancy caused by excessive proliferation of monocytic and granulocytic cells; which infiltrate the spleen/liver, intestines and lungs
- Rare- 2% of pediatric hematologic malignancies (in the US about 50 new cases per year); 1.2 cases per million annually, median age is 2 years
- Present with fever, thrombocytopenia, failure to thrive, and splenomegaly.
- Frequently fatal, allogeneic stem cell transplant only curative approach; which carries an event-free survival (EFS) at 5 years of only 52% due to relapsed disease or transformation to AML
- Historically, myeloid progenitor hypersensitivity to granulocyte macrophage colony-stimulating factor (GM-CSF) is a key diagnostic feature of JMML

OVERVIEW (2)

- About 90% of JMML patients have some sort of genetic abnormality in their leukemia cells.
- This includes:
 - 15-20% of patients with neurofibromatosis 1 (NF1)
 - 25% of patients with mutations in one of the RAS family of oncogenes
 - Another 35% of patients with a mutation in PTPN11

RAS AND GENOMICS

- Major progress in understanding the pathogenesis of JMML has been achieved by deciphering the genetic lesions that initiate the disease, the majority of which encode proteins that signal in the RAS/MAPK pathway
- With the complete genomic landscape of JMML nearly defined, molecular testing has taken a fundamental role in establishing the diagnosis.
- JMML is fundamentally a disease of hyperactive Ras signaling, with somatic mutations (superimposed on germ-line lesions in some instances) in the NF1, NRAS, KRAS, PTPN11, and CBL genes found in more than 90% of cases
- Somatic point mutations in NRAS and KRAS genes occur in about 25% of JMML cases, with the most common amino acid substitutions occurring at codons 12, 13, and 61

CLINICAL DEVELOPMENT PATHWAY (REQUIRES CLINICAL EXPERT DISCUSSION)

JMML

- Intravenous rigosertib
- Oral rigosertib in combination with azacitidine
 - De novo
 - Azacitidine failures
- After MEK Failure (underway at COG)
- Post transplant recurrence

OTHER Considerations?

- Langerhans cell histiocytosis (LCH)
- driver somatic mutations in BRAF in up to 55% of patients
- activation of the RAS-RAF-MEK-ERK pathway in nearly 100% of patients with LCH.

QUESTIONS ??

THANK YOU