PHASE II STUDY OF ORAL RIGOSERTIB COMBINED WITH AZACITIDINE AS FIRST LINE THERAPY IN PATIENTS WITH HIGHER-RISK MYELODYSPLASTIC SYNDROMES (MDS)

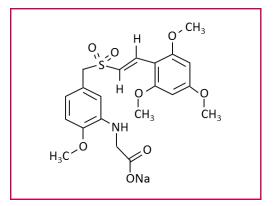
Shyamala C. Navada, MD, Guillermo Garcia-Manero, MD, Ehab L. Atallah, MD, M. Nabeel Rajeh, MD, Jamile M. Shammo, MD, Elizabeth A. Griffiths, MD, Samer K. Khaled, MD, Shaker R. Dakhil, MD, David E. Young, MD, Rosalie Odchimar-Reissig, RN, Afoluso Ronnee Adesanya, MD, Patrick S. Zbyszewski, MBA, Richard C. Woodman, MD, Pierre Fenaux, MD, Lewis R. Silverman, MD

61st ASH Annual Meeting & Exposition 2019: Orlando, FL, USA

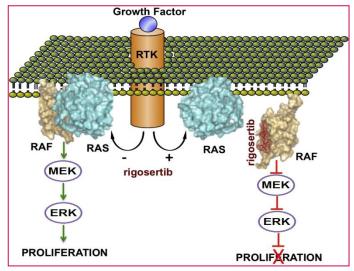
TREATMENT OF HIGHER-RISK MDS

- Azacitidine is standard of care for HR-MDS patients
- Clinical responses in MDS 38-50%^a
 - CR rate 7-24%
 - Recent studies failed to demonstrate improved clinical benefit with combination therapies compared to single agent AZA
 - Aza + Valproic acid vs Daunorubicin + Cytarabine vs Aza (Ades L, et al., #467, ASH 2018)
 - Aza + Lenalidomide vs Aza + Vorinostat vs Aza (Sekeres M, et al., SWOG Intergroup JCO 2017)
 - Aza + Etinostat vs Azacitidine
 (Prebet T, et al., ECOG Intergroup JCO 2014)
- All patients ultimately relapse or fail to respond
- HMA failure is associated with a poor prognosis Median OS 4-6 months^b
- Novel combinations should
 - Be well tolerated (Sekeres; Ades)
 - Mitigate potential negative interaction between agents (Prebet)

a Silverman LR, McKenzie DR, Peterson BL, et al. Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol 2006;24(24): 3895-3903.

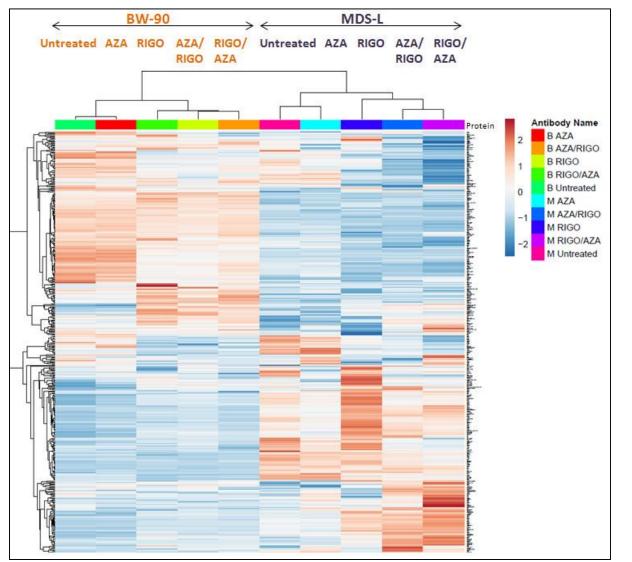

b Prebet T, Gore SD, Estemi B, et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J Clin Oncol 2011;29(24):33227

RIGOSERTIB MECHANISM OF ACTION

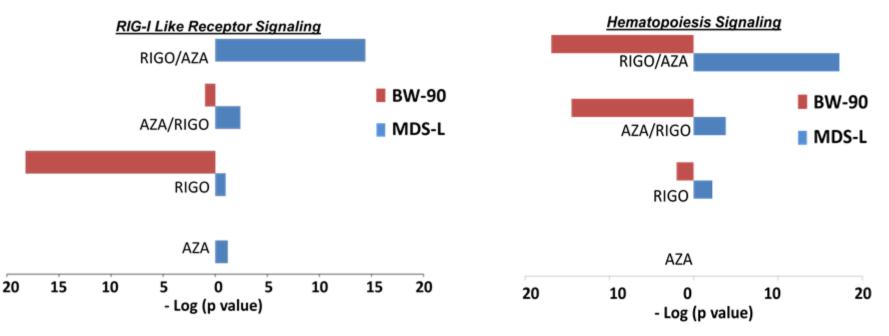

- Inhibits cellular signaling as a Ras mimetic by targeting the Ras-binding domain (RBD)^a
- Novel MOA blocks multiple cancer targets and downstream pathways PI3K/AKT and Raf/PLK
- Can ameliorate multiple dysregulated signaling transduction pathways in higher-risk MDS^b
- In vitro, sequential exposure to rigosertib followed by azacitidine achieves maximum synergy at clinically achievable concentrations^c

^aDivikar, S.K.,et al. (2016). "A Small Molecule RAS-Mimetic Disrupts Association with Effector Proteins to Block Signaling." Cell 165, 643-655 ^bFeng Xu, Qi He, Xiao Li, Chun-Kang Chang, et al: SCIENTIFIC REPORTS; 4 : 7310; DOI: 10.1038/srep07310

^cSkiddan I, Zinzar S, Holland JF, et al. Toxicology of a novel small molecule ON1910Na on human bone marrow and leukemic cells in vitro. AACR Abstract 1310, April 2006; 47:309.



RAS targeted novel mode of action

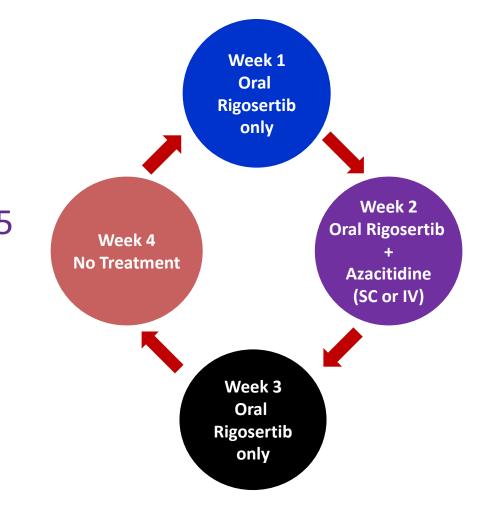

Heat map shows the differential protein expression on treatment with AZA and RIGO alone and their Sequential Combinations in MDS-L and BW-90 cell lines by Reverse Phase Protein Array Analysis

- Differences in protein expression are dependent on the sequence of Rigosertib and Azacitidine compared to either agent alone in MDS-L and BW90 (AML) cell lines.
- Wnt β catenin signaling,
 which affects
 hematopoiesis, was
 specifically upregulated
 with the Rigo/AZA
 combination compared
 to RIGO or AZA alone at
 both the mRNA and
 protein levels.

RIGOSERTIB MODULATES INNATE IMMUNE SIGNALING

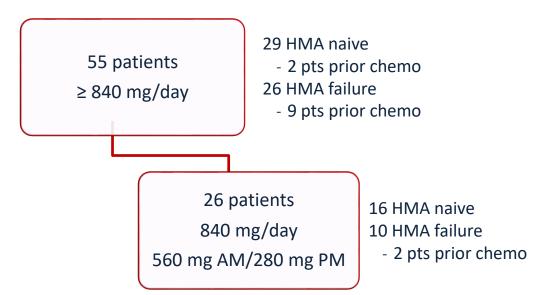
The variation in RIG-I like receptor signaling in MDS-L and BW-90 cell lines upon treatment with AZA and RIGO either alone or in sequential combinations. The variation in Hematopoiesis signaling in MDS-L and BW-90 cell line upon treatment with AZA and RIGO either alone or in sequential combinations.

- Antiviral response gene RIG-I is up-regulated by RIGO/AZA in an MDS cell line
- RIGO/AZA significantly up-regulates hematopoiesis signaling compared to either AZA or RIGO alone
- Supports the original observation regarding the significance of the sequence of RIGO/AZA


Rai R. et. al. (2019). The Sequenced Combination of Rigosertib and Azacitidine has Modulatory Effects on CXCL8, RIG-I like Receptor (RLR) and Wnt/β-Catenin Signaling and Downstream Hematopoiesis Pathways in an in Vitro Model of the Myelodysplastic Syndrome . ASH Abstract # 4231.

ASH Dec 2019

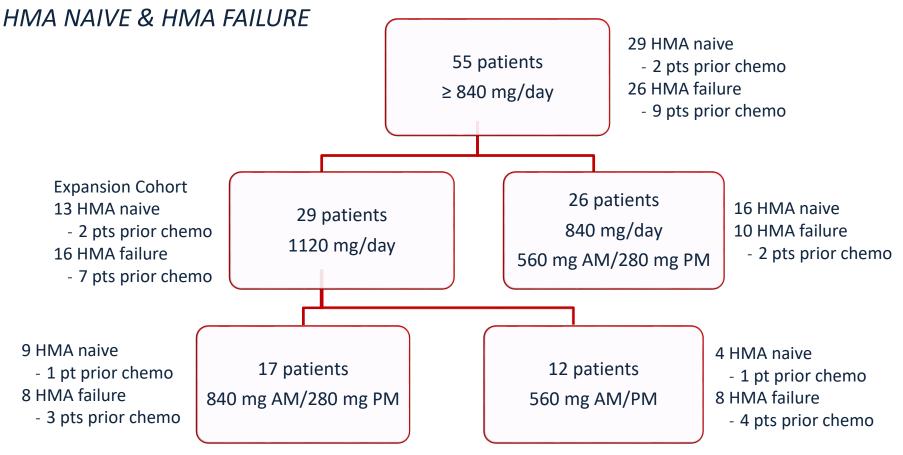
COMBINATION DOSE ADMINISTRATION


Week 1: Oral rigosertib twice daily* Week 2: Oral rigosertib twice daily + azacitidine (75 $mg/m^2/day SC \text{ or IV}$ Week 3: Oral rigosertib twice daily Week 4: No treatment

*early AM/mid-afternoon PM

PATIENTS WITH HR-MDS EVALUABLE FOR RESPONSE PER RIGOSERTIB DOSING COHORT

HMA NAIVE & HMA FAILURE



Rationale for Expansion Cohort at a dose of 1120mg/day:

- Rigosertib as a single agent administered orally at dose of 1120 mg/day yielded the highest response rate of transfusion independence (44%) in lower risk MDS (Raza A, et al., #1689 ASH 2017)
- Pursue Safety Optimization Strategies in additional patients at a higher daily dose

ASH Dec 2019

PATIENTS WITH HR-MDS EVALUABLE FOR RESPONSE PER RIGOSERTIB DOSING COHORT

Rationale for Expansion Cohort at a dose of 1120mg/day:

- Rigosertib as a single agent administered orally at dose of 1120 mg/day yielded the highest response rate of transfusion independence (44%) in lower risk MDS (Raza A, et al., #1689 ASH 2017)
- Pursue Safety Optimization Strategies in additional patients at a higher daily dose

PATIENT CHARACTERISTICS – RIGOSERTIB ≥ 840 MG/DAY

HMA NAIVE

Number of patients tre	ated	39 (%)
Age	Median	64
	Range	42 - 90
Sex	Male	17 (44)
	Female	22 (56)
Race	Asian	3 (8)
	Black	6 (15)
	Hispanic	3 (8)
	White	26 (67)
	Unknown	1 (3)
IPSS-R classification	Low	3 (8)
	Intermediate	9 (23)
	High	8 (21)
	Very high	17 (44)
	Unknown	2 (5)
IPSS-R cytogenetics	Very poor	9 (23)
	Poor	7 (18)
	Intermediate	9 (23)
	Good	14 (36)

HMA NAIVE: RIGOSERTIB ≥ 840MG/DAY

EFFICACY

Evaluable for response	29* (%)
Overall response per IWG 2006	26 (90)
CR+PR	10 (34)
Complete remission (CR)	10 (34)
Partial remission (PR)	0
Marrow CR + Hematologic Improvement	5 (17)
Hematologic Improvement alone	3 (10)
Marrow CR alone	8 (28)
Stable disease	3 (10)
Progression	0
Median duration of response (months)	12.2
we dan duration of response (months)	(range, 0.1-24.2+)
Madian duration of treatment (months)	7.8
Median duration of treatment (months)	(range, 0.7-25.1+)
Median time to initial/best response (cycles)	1/4

* Includes 2 patients treated with non-HMA, chemotherapy

RESPONSE BY IPSS-R CYTOGENETICS (N=29)

	Total Patients	Responders (%)
Very poor cytogenetics (n=9)	5	4 (80)
Poor cytogenetics (n=7)	4	4 (100)
Intermediate cytogenetics (n=9)	8	7 (88)
Good cytogenetics (n=14)	12	11 (92)

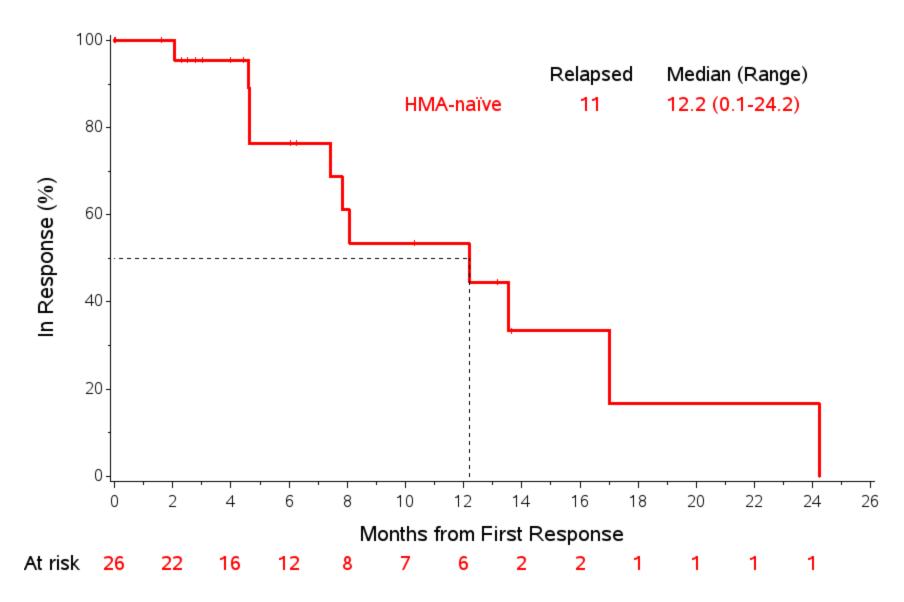
Baseline cytogenetics on study

RESPONSE BY IPSS-R RISK GROUP

Response per IWG 2006	Low/ Intermediate N=11 (%)	High N=6 (%)	Very high N=12 (%)
Complete remission	4 (36)	1 (17)	5 (42)
Marrow CR + HI	1 (9)	1 (17)	3 (25)
HI alone	3 (27)	0	0
Marrow CR alone	2 (18)	3 (50)	3 (25)
Stable disease	1 (9)	1 (17)	1 (8)

HEMATOLOGIC IMPROVEMENT BY IPSS-R RISK GROUP

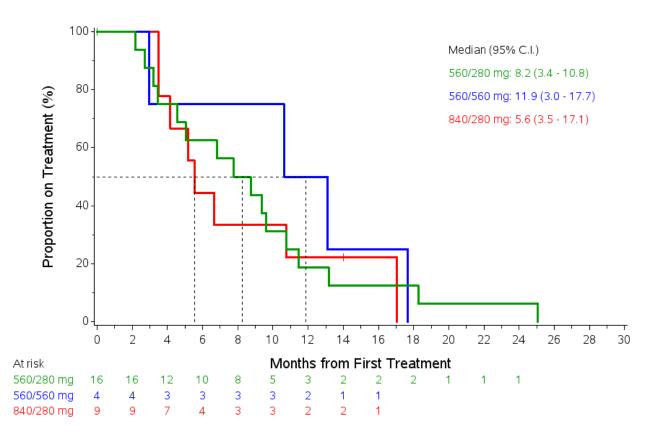
Per IWG 2006	Low/ Intermediate N=11 (%)	High N=6 (%)	Very high N=12 (%)
Hematologic improvement	8 (73)	2 (33)	8 (67)
Erythroid response	1 (9)	1 (17)	8 (67)
Platelet response	6 (55)	1 (17)	7 (58)
Neutrophil response	4 (36)	1 (17)	4 (33)


OVERALL HEMATOLOGIC RESPONSE BY DOSING COHORT

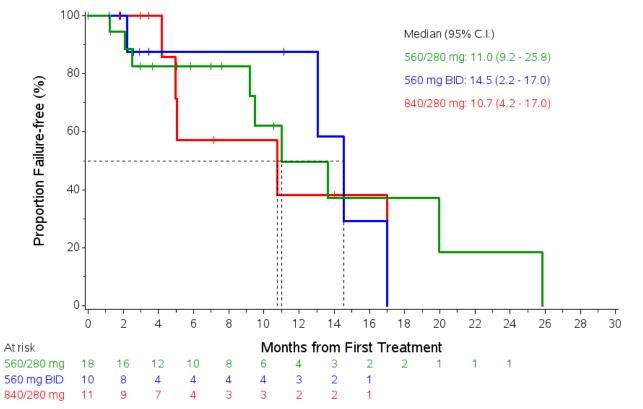
Response per IWG 2006	560/280 N=16 (%)	560/560 N=4 (%)	840/280 N=9 (%)
Complete remission	6 (38)	2 (50)	2 (22)
Marrow CR + Hematologic improvement	3 (19)	0	2 (22)
Hematologic improvement alone	1 (6)	0	2 (22)
Marrow CR alone	4 (25)	1 (25)	3 (33)
Stable disease	2 (13)	1 (25)	0

HEMATOLOGIC IMPROVEMENT BY DOSING COHORT

Per IWG 2006	560/280 N=16 (%)	560/560 N=4 (%)	840/280 N=9 (%)
Hematologic improvement	10 (63)	2 (50)	6 (67)
Erythroid response	7 (44)	1 (25)	2 (22)
Platelet response	8 (50)	2 (50)	4 (44)
Neutrophil response	5 (31)	1 (25)	3 (33)


DURATION OF THE OVERALL RESPONSE

DURATION OF TREATMENT IN HMA-NAIVE PATIENTS


Cohort	Evaluable patients	Off-treatment	On-treatment
560/280 mg	16	16 (100%)	0
560560 mg	4	4 (100%)	0
840/280 mg	9	8 (89%)	1 (9%)

Time on treatment of the continuing patient was censored at the last study treatment.

TIME TO TREATMENT FAILURE IN HMA-NAIVE PATIENTS

Cohort	Patients	Treatment failure	No failure
560/280 mg	18	9 (50%)	9 (50%)
560 mg BID	10	4 (40%)	6 (60%)
840/280 mg	11	5 (45%)	6 (55%)

(onset of relapse, progression, adverse event, or death)

ADVERSE EVENTS

Most Common Treatment Emergent Adverse Events			
N = 39	Patients (%)		
MedDRA Preferred Term	All grades	Grade ≥3	
Any Event	39 (100)	35 (90)	
Haematuria	20 (51)	6 (15)	
Fatigue	19 (49)	2 (5)	
Pyrexia	17 (44)	1 (3)	
Diarrhoea	16 (41)	4 (10)	
Nausea	15 (38)	-	
Constipation	14 (36)	-	
Dysuria	14 (36)	5 (13)	
Neutropenia	14 (36)	13 (33)	
Thrombocytopenia	14 (36)	12 (31)	
Anaemia	11 (28)	11 (28)	
Febrile neutropenia	10 (26)	9 (23)	

CONCLUSIONS

- Oral rigosertib in combination with AZA demonstrated efficacy in HMA-naive patients
- In HMA-naive MDS patients oral rigosertib at doses ≥ 840 mg/day administered with AZA is associated with an ORR of 90% and a CR rate of 34%
- Oral rigosertib in combination with AZA was well tolerated and administered in repetitive cycles for more than two years
- Based on the efficacy data and favorable safety profile, a pivotal Phase II/III adaptive design trial in higher-risk HMA naive MDS population is planned

Shyamala C. Navada, MD; Lewis R. Silverman, MD Mount Sinai Medical Center. New York

Guillermo Garcia-Manero, MD; Yesid Alvarado Valero, MD,

Maro N. Ohanian, DO, Naveen Pemmaraju, MD

University of Texas MD Anderson

Cancer Center, Houston

Ehab L. Atallah, MD Froedtert Hospital & the Medical College of Wisconsin, Milwaukee

M. Nabeel Rajeh, MD Saint Louis University, St. Louis

Saint Louis Oniversity, St. Louis

Jamile M. Shammo, MD Rush University Medical Center, Chicago

Elizabeth A. Griffiths, MD

Roswell Park Cancer Institute, Buffalo

Samer K. Khaled, MD City of Hope, Duarte

Shaker R. Dakhil, MD Cancer Center of Kansas, Wichita

David E. Young, MD

Desert Hematology Oncology Medical Group, Inc., Rancho Mirage

THANKS TO PARTICIPATING PATIENTS AND **THEIR FAMILIES, INVESTIGATORS AND RESEARCH STAFF**